Metrología

Dispositivo medidores, entre ellos termómetro del circuito de refrigeración, amperímetro y presión del aceite.

La metrología (del griego μέτρον [metron], ‘medida’, y el sufijo -logía, ‘tratado’, ‘estudio’, ‘ciencia’, y este del sufijo griego -λογία [loguía])[1][2] es la rama de la física que estudia las mediciones de las magnitudes garantizando su normalización mediante la trazabilidad. Acorta la incertidumbre en las medidas mediante un campo de tolerancia. Incluye el estudio, mantenimiento y aplicación del sistema de pesos y medidas. Actúa tanto en los ámbitos científico, industrial y legal, como en cualquier otro demandado por la sociedad. Su objetivo fundamental es la obtención y expresión del valor de las magnitudes empleando para ello instrumentos, métodos y medios apropiados, con la exactitud requerida en cada caso.

La metrología tiene dos características muy importantes: el resultado de la medición y la incertidumbre de medida.

Objetivo y aplicaciones

Los científicos y las industrias utilizan una gran variedad de instrumentos para llevar a cabo sus mediciones. Desde objetos sencillos como reglas y cronómetros hasta potentes microscopios, medidores de láser e incluso avanzadas computadoras muy precisas.

Por otra parte, la metrología es parte fundamental de lo que en los países industrializados se conoce como Infraestructura Nacional de la Calidad,[3] compuesta además por las actividades de normalización, ensayos, certificación y acreditación, que a su vez son dependientes de las actividades metrológicas que aseguran la exactitud de las mediciones que se efectúan en los ensayos, cuyos resultados son la evidencia para las certificaciones. La metrología permite asegurar la comparabilidad internacional de las mediciones y por tanto la intercambiabilidad de los productos a escala internacional.

En el ámbito metrológico los términos tienen significados específicos y estos están contenidos en el Vocabulario Internacional de Metrología o VIM.[4]

Dentro de la metrología existen diversas áreas. Por ejemplo, la metrología eléctrica estudia las medidas eléctricas: tensión (o voltaje), intensidad de corriente (o amperaje), resistencia, impedancia, reactancia, etc. La metrología eléctrica está constituida por tres divisiones: tiempo y frecuencia, mediciones electromagnéticas y termometría.

Al final se expone un muestrario de los instrumentos de medición más utilizados en las industrias metalúrgicas de fabricación de componentes, equipos y maquinaria.

Calibrado de instrumentos de medida

El calibrado o calibración es el procedimiento de comparación entre lo que indica un instrumento y lo que "debiera indicar" de acuerdo con un patrón de referencia con valor conocido. De esta definición se deduce que para calibrar un instrumento o patrón es necesario disponer de uno de mayor precisión que proporcione el valor convencionalmente verdadero, que es el que se empleará para compararlo con la indicación del instrumento sometido a calibrado. Esto se realiza mediante una cadena ininterrumpida y documentada de comparaciones hasta llegar al patrón primario, y que constituye lo que se llama trazabilidad. El objetivo del calibrado es mantener y verificar el buen funcionamiento de los equipos, responder a los requisitos establecidos en las normas de calidad y garantizar la fiabilidad y trazabilidad de las medidas.

Durante el calibrado, se contrasta el valor de salida del instrumento a calibrar frente a un patrón en diferentes puntos de calibración. Si el error de calibración —error puesto de manifiesto durante la calibración— es inferior al límite de rechazo, la calibración será aceptada. En caso contrario se requerirá ajuste del instrumento y una contrastación posterior, tantas veces como sea necesario hasta que se obtenga un error inferior al límite establecido. En equipos que no disponen de ajuste, como termopares, etc., en caso de no satisfacer las tolerancias marcadas deberían ser sustituidos por otros previamente calibrados.

En la calibración, los resultados deben documentarse con un certificado de calibración, en el cual se hacen constar los errores encontrados así como las correcciones empleadas y errores máximos permitidos. Además pueden incluir tablas, gráficos, etc.

Parámetros a considerar en toda calibración

Trazabilidad

La trazabilidad es la propiedad del resultado de las mediciones efectuadas por un instrumento o por un patrón, tal que pueda relacionarse con patrones nacionales o internacionales y a través de éstos a las unidades fundamentales del sistema Internacional de Unidades por medio de una cadena ininterrumpida de comparaciones, con todas las incertidumbres determinadas.

Así se tiene una estructura piramidal en cuya base se encuentran los instrumentos utilizados en las operaciones de medida corrientes de un laboratorio. Cada escalón o paso intermedio de la pirámide se obtiene del que le precede y da lugar al siguiente por medio de una operación de calibración, donde el patrón fue antes calibrado por otro patrón, etc.

Proceso de calibración

Errores en los instrumentos de medida.

Al realizar una calibración de un instrumento se pueden encontrar los siguientes tipos de error:

Para llevar a cabo la calibración de un instrumento, se siguen los siguientes pasos:

  1. Chequeo y ajustes preliminares:
    • Observar el estado físico del equipo, desgaste de piezas, limpieza y respuesta del equipo.
    • Determinar los errores de indicación del equipo comparado con un patrón adecuado —según el rango y la precisión—.
    • Llevar ajustes de cero, multiplicación, angularidad y otros adicionales a los márgenes recomendados para el proceso o que permita su ajuste en ambas direcciones —no en extremos—. Luego se realizan encuadramientos preliminares, lo cual reduce al mínimo el error de angularidad.
  2. Ajuste de cero:
    • Colocar la variable en un valor bajo de cero a 10% del rango o en la primera división representativa a excepción de los equipos que tienen supresión de cero o cero vivo; para ello se simula la variable con un mecanismo adecuado, según rango y precisión, lo mismo que un patrón adecuado.
    • Si el instrumento que se está calibrando no indica el valor fijado anteriormente, se ajusta el mecanismo de cero.
    • Si el equipo tiene ajustes adicionales con cero variable, con elevaciones o supresiones, se hace después del punto anterior de ajuste de cero.
  3. Ajuste de multiplicación:
    •  Colocar la variable en un valor alto, del 70 al 100%.
    •  Si el instrumento no indica el valor fijado, se debe ajustar el mecanismo de multiplicación o span.
  4. Repetir los dos últimos pasos hasta obtener la calibración correcta para los valores alto y bajo.
  5. Ajuste de angularidad:
    •  Colocar la variable al 50% del span.
    •  Si el incremento no indica el valor del 50% ajustar el mecanismo de angularidad según el equipo.
  6. Repetir los dos últimos pasos (4 y 5) hasta obtener la calibración correcta, en los tres puntos.

Como el patrón no permite medir el valor verdadero, también tiene un error, y como además en la operación de comparación intervienen diversas fuentes de error, no es posible caracterizar la medida por un único valor, lo que da lugar a la llamada incertidumbre de la medida.

En palabras muy simples, la calibración no es más que la comparación de lecturas (datos arrojados) entre un instrumento patrón y el instrumento de prueba. Nunca se debe confundir la calibración con el ajuste, que es uno de los procesos de la calibración.

Medición de resultados

El resultado de cualquier medida es sólo una aproximación o estimación del verdadero valor de la cantidad sometida a medición —el mensurando—. De esta forma, la expresión del resultado de una medida es completa únicamente si va acompañado del valor de la incertidumbre asociada a dicha medida. La incertidumbre es por tanto una información numérica que completa un resultado de medida, indicando la cuantía de la duda acerca de este resultado.

La incertidumbre de medida incluye generalmente varias componentes:

Tipo A: Aquellas que pueden estimarse a partir de cálculos estadísticos obtenidos de las muestras recogidas en el proceso de medida. En la mayor parte de los casos, la mejor estimación disponible del valor esperado de una magnitud Xi, de la cual se han obtenido n observaciones, bajo las mismas condiciones de medición, es la media aritmética de las n observaciones \overline{X}

Tipo B: Aquellas que únicamente están basadas en la experiencia o en otras informaciones. Este tipo de evaluación viene determinada por las contribuciones a la incertidumbre, estimadas mediante métodos no estadísticos, y que se caracterizan por unos términos u^2(Xi) , que pueden ser consideradas como unas aproximaciones de las varianzas correspondientes.

Generalmente la calibración de un equipo de medida para procesos industriales consiste en comparar la salida del equipo frente a la salida de un patrón de exactitud conocida cuando la misma entrada —magnitud medida— es aplicada a ambos instrumentos. Todo procedimiento de calibración se puede considerar como un proceso de medida del error que comete un equipo.

Calibración e incertidumbre

Puesto que cualquier proceso de medida lleva asociada una incertidumbre, en las calibraciones se deben tener en cuenta todas las fuentes significativas de incertidumbre asociadas al proceso de medida del error que se lleva a cabo. En el entorno industrial se acepta que una fuente de incertidumbre puede considerarse no significativa cuando su estimación es inferior en valor absoluto a 4 veces la mayor de todas las fuentes estimadas.

Factor de cobertura
K=1 (68,27%) Valor esperado comprendido entre μ–σ y μ+σ
K=2 (95,45%) Valor esperado comprendido entre μ–2σ y μ+2σ
K=3 (99,73%) Valor esperado comprendido entre μ–3σ y μ+3σ

Ley de la propagación de la incertidumbre: u(y)=\sqrt{\sum_{i=1}^n u_i^2(y) }

Las contribuciones a la incertidumbre vienen determinadas por los componentes de esa incertidumbre, junto con su cálculo y combinación:

  1. Calibración: Dada por el certificado de calibración. u_{cal}=\frac{U_{Cal} }{k_{Cal} }
  2. Deriva: Variación de la medida a lo largo del tiempo. u_{deriva}=\frac{[C_n-C_{n-1}]_{max} }{\sqrt3}
  3. Temperatura: Debida a la influencia de la temperatura. u_{temperatura}=\frac{Temperatura_{max} }{\sqrt3}
  4. Resolución: Mínima variación perceptible. u_{resoluci\acute on}=\frac{Resoluci\acute on}{\sqrt3}
  5. Inestabilidad: Inestabilidad de la fuente de medida o equipo.u_{inestabilidad}=\frac{[a_{max}-a_{min}]/2}{\sqrt3}
  6. Método: Debida al método de medida, posible método de medida indirecta de la magnitud a medir. u_{m\acute e todo}=\frac{L\acute imite\ m\acute aximo}{\sqrt{3} }
  7. Repetibilidad: Debida a las medidas realizadas por un mismo instrumento en distintas condiciones. u_{repetitibidad}=\frac{s}{\sqrt3} \qquad s=\sqrt{\frac{\sum_{i=1}{n}(x_i-x)^2}{n-1} }
  8. Operador: Debidos a equipos de medida analógicas especialmente, por lo que se aconseja hacer coincidir las medidas con las divisiones de la escala. u_{operador}=\frac{\frac{division}{\frac{n}{2} } }{\sqrt3}
  9. Reproducibilidad: Debida a las medidas realizadas por distintos instrumentos en distintas condiciones. u_{reproductibilidad}=\frac{s}{\sqrt3} \qquad s=\sqrt{\frac{\sum_{i=1}^n(x_i-x)^2}{n-1} }

Otras fuentes de incertidumbre de medida

Un conocimiento completo exigiría una cantidad infinita de información. Los fenómenos que contribuyen a la incertidumbre y, por tanto, al hecho de que el resultado de una medición no pueda ser caracterizado con un único valor. En la práctica, pueden existir muchas fuentes de incertidumbre en una medición, entre ellas las siguientes:

Instrumentos de medición

En la siguiente lista se muestran algunos instrumentos de medición e inspección:

Calibre pie de rey.
Pie de rey o calibrador Vernier universal
Sirve para medir con precisión elementos pequeños (tornillos, orificios, pequeños objetos, etc.). La precisión de esta herramienta llega a la décima, a la media décima de milímetro e incluso llega a apreciar centésimas de dos en dos (cuando el nonio está dividido en cincuenta partes iguales). Para medir exteriores se utilizan las dos patas largas, para medir interiores (por ejemplo diámetros de orificios) las dos patas pequeñas, y para medir profundidades un vástago que sale por la parte trasera, llamado sonda de profundidad. Para efectuar una medición, se ajusta el calibre al objeto a medir y se fija. La pata móvil tiene una escala graduada (10, 20 o 50 divisiones, dependiendo de la precisión).
La medición con este aparato se hará de la siguiente manera: primero se deslizará la parte móvil de forma que el objeto a medir quede entre las dos patillas si es una medida de exteriores. La patilla móvil indicará los milímetros enteros que contiene la medición. Los decimales deberán averiguarse con la ayuda del nonio. Para ello se observa qué división del nonio coincide con una división (cualquiera) de las presentes en la regla fija. Esa división de la regla móvil coincidirá con los valores decimales de la medición.
Pie de rey de tornero
Es muy parecido al anteriormente descrito, pero con las uñas adaptadas a las mediciones de piezas en un torno. Este tipo de calibres no dispone de patillas de interiores pues con las de exteriores pueden realizarse medidas de interiores, pero deberá tenerse en cuenta que el valor del diámetro interno deberá incrementarse en 10 mm debido al espesor de las patillas del instrumento (5 mm de cada una).
Calibre de profundidad
Es un instrumento de medición parecido a los anteriores, pero tiene unos apoyos que permiten la medición de profundidades, entalladuras y agujeros. Tiene distintas longitudes de bases y además son intercambiables.
Banco de una coordenada horizontal
Equipo de medición para la calibración de los instrumentos de medida. Provisto de una regla de gran precisión permite comprobar los errores de los útiles de medida y control, tales como pies de rey, micrómetros, comparadores, anillos lisos y de rosca, tampones, quijadas, etc.
Micrómetro de exteriores.
Micrómetro
Reloj comparador.
Reloj comparador
Es un instrumento que permite realizar comparaciones de medición entre dos objetos. También tiene aplicaciones de alineación de objetos en maquinarias. Necesita de un soporte con pie magnético.
Visualizadores con entrada Digimatic
Es un instrumento que tiene la capacidad de mostrar digitalmente la medición de un instrumento analógico.
Verificador de interiores
Es un instrumento que sirve para tomar medidas de agujeros y compararlas de una pieza a otra. Posee un reloj comparador para mayor precisión y piezas intercambiables.
Gramil normal y gramil digital.
Gramil o calibre de altitud
Es un instrumento capaz de realizar mediciones en altura verticalmente, y realizar señalizaciones y paralelas en piezas.
Goniómetro universal
Es un instrumento que mide el ángulo formado por dos visuales, cifrando el resultado. Dicho ángulo podrá estar situado en un plano horizontal y se denominará “ángulo azimutal”; o en un plano vertical, denominándose “ángulo cenital” si el lado origen de graduación es la línea cenit-nadir del punto de estación; o “ángulo de altura” si dicho lado es la línea horizontal del plano vertical indicado que pasa por el punto de vista o de puntería.
Nivel de agua
Es un instrumento de medición utilizado para determinar la horizontalidad o verticalidad de un elemento. Es un instrumento muy útil para la construcción en general y para la industria. El principio de este instrumento está en un pequeño tubo transparente (cristal o plástico) el cual está lleno de líquido con una burbuja en su interior. La burbuja es de tamaño inferior a la distancias entre las dos marcas. Si la burbuja se encuentra entre las dos marcas, el instrumento indica un nivel exacto, que puede ser horizontal o vertical.
Revoluciones
Eléctricos
Balanza
Instrumento que es capaz de medir la masa de un determinado elemento. Las hay de distintos tamaños y de distintos rangos de apreciación de masas.
Calibre tapón cilíndrico pasa-no pasa.
Galgas para roscas y espesores
Son reglas comparación para ver el tipo de rosca de un tornillo o el espesor de un elemento. La galga de rosca puede ser de rosca métrica o Whitworth.
Calibre pasa-no pasa
Instrumentos para inspección óptica
Termómetro
Instrumento que permite realizar mediciones de temperatura.
Láser
Como instrumento de medición para la medición de distancias con alta precisión.
Durómetro
Instrumento electrónico que permite medir y hacer pruebas de la dureza de distintos materiales, ya sean metálicos, cerámicos, plásticos o de piedra.

Véase también

Referencias

  1. «metrología», Diccionario de la lengua española (vigésima segunda edición), Real Academia Española, 2001.
  2. «-logía», Diccionario de la lengua española (vigésima segunda edición), Real Academia Española, 2001.
  3. Dr. Clemens Sanetra, Rocío M. Marbán (diciembre de 2012). «Una infraestructura nacional de la calidad» (PDF). Consultado el 13 de agosto de 2012.
  4. 1 2 Joint Committee for Guides in Metrology (JCGM/WG 2) (2008). «International Vocabulary of Metrology – Basic and General Concepts and Associated Terms» (PDF). Consultado el 13 de agosto de 2012.

Enlaces externos

This article is issued from Wikipedia - version of the Monday, February 15, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.