Proyección ortogonal

En geometría euclidiana, la proyección ortogonal es aquella cuyas rectas proyectantes auxiliares son perpendiculares al plano de proyección (o a la recta de proyección), estableciéndose una relación entre todos los puntos del elemento proyectante con los proyectados.[1]

En el plano, la proyección ortogonal es aquella cuyas líneas proyectantes auxiliares son perpendiculares a la recta de proyección L.

Así, dado un segmento AB, bastará proyectar los puntos "extremos" del segmento –mediante líneas proyectantes auxiliares perpendiculares a L–, para determinar la proyección sobre la recta L.

Una aplicación de proyecciones ortogonales son los teoremas de las relaciones métricas en el triángulo mediante las cuales se puede calcular la dimensión de los lados de un triángulo.

El concepto de proyección ortogonal se generaliza a espacios euclidianos de dimensión arbitraria, inclusive de dimensión infinita. Esta generalización juega un papel importante en muchas ramas de matemática y física.

Casos de proyección ortogonal en el plano

Proyección ortogonal de un punto
Proyección ortogonal de un segmento

Véase también

Proyección gráfica
Proyección cónica

Proyección paralela

Proyección ortogonal



Proyección oblicua




Referencias

  1. Diccionario de Arte II. Biblioteca de Consulta Larousse. Spes Editorial SL (RBA). 2003. p. 137. ISBN 84-8332-391-5. DL M-50.522-2002.
This article is issued from Wikipedia - version of the Monday, March 14, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.